
Requirements Engineering for Business Information Systems: A
Dimension-Oriented Approach

ARBI GHAZARIAN
Arizona State University

Department of Engineering
7171 E. Sonoran Arroyo Mall, Mesa, AZ 85212

USA
Arbi.Ghazarian@asu.edu

Abstract: In previous work, we developed a software engineering theory, called dimension-orientation, which
is capable of explaining and predicting the characteristics of the requirements space in the domain of business
information systems. The dimension-oriented theory serves as a solid foundation for the design of more effective
software engineering processes in the domain of business information systems. Accordingly, In this paper, we
develop a theory-backed approach for the engineering of requirements in business information systems, which is
based on the dimension-oriented theory. We further provide a mathematical formalism for the theory and evaluate
its theoretical and methodological aspects within the two standard frameworks of design science research and
software engineering theory goodness criteria.

Key–Words: Requirements Engineering, Software Engineering Theory, Design Science, Dimension Orientation,
Business Information System, Domain Engineering, Theory Goodness Criteria, Requirements Taxonomy.

1 Introduction
In a series of previous work [3, 11, 4, 10, 5, 6, 9,
8, 7, 13, 12], we developed a software engineering
theory, called dimension-orientation, which is capa-
ble of explaining and predicting important charac-
teristics of software requirements in the domain of
business information systems. Among other impor-
tant aspects, these characteristics include a compre-
hensive taxonomy of functional requirements classes
in the domain of business systems as well as the
relationships between the various taxonomy classes
(i.e., the relationships between the various require-
ment types). Because of its explanatory and predic-
tive capabilities, the dimension-oriented theory can
serve as a domain model that accurately and reliably
characterizes the requirements space in future (i.e.,
to-be-developed) business information systems. The
dimension-oriented theory is shown in Tables 1 and 2,
which use the four-component theory structure, sug-
gested by Sjoberg et al. [23], where the description
for a theory is divided into the following four parts:

1. Constructs (i.e., the basic elements of the theory)

2. Propositions (i.e., descriptions of the interactions
among the theory constructs)

3. Explanations (i.e., explanations as to why the
propositions of the theory hold)

4. Scope (i.e., the universe of discourse in which the
theory is applicable)

The present work uses the theoretical foundation
of dimension-orientation in order to developed a prac-
tical and effective approach for the engineering of re-
quirements in business information systems. The con-
tributions of this paper are twofold: first, we develop
a mathematical formalism for dimension-orientation
and evaluate its theoretical and methodological as-
pects within the two standard frameworks of design
science research [14] and software engineering the-
ory goodness criteria [23]. Second, we introduce and
evaluate a Dimension-Oriented Requirements Engi-
neering (DORE) approach for the domain of business
information systems. Throughout this paper, we use
the terms business information systems and enterprise
information systems interchangeably.

The rest of this paper is organized as follows:
in Section 2, we provide a mathematical formalism
for dimension orientation. In Section 3, we present
the Dimension-Oriented Requirements Engineering
(DORE) approach. The evaluation of the DORE pro-
cess in a controlled environment follows in Section
4. In Section 5, we will evaluate the theoretical and
methodological aspects of the work presented in this
paper. Conclusions and directions for future research
are presented in Section 6.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 229 Issue 3, Volume 10, July 2013

Table 1: Constructs, Propositions, Explanations, and the Scope of the Dimension-Oriented Theory

Constructs
C1 Functional Requirements Space
C2 Functional Requirements Classes (Problem Dimensions)
C3 System Functions
C4 Atomic Functional Requirements
C5 Data Output Functional Requirement Class
C6 Data Input Functional Requirement Class
C7 Event Trigger Functional Requirement Class
C8 Business Logic Functional Requirement Class
C9 Data Persistence Functional Requirement Class
C10 UI Navigation Functional Requirement Class
C11 External Call Functional Requirement Class
C12 Communication Functional Requirement Class
C13 User Interface Functional Requirement Class
C14 UI Logic Functional Requirement Class
C15 Data Validation Functional Requirement Class
C16 External Behavior Functional Requirement Class
C17 Core Functional Requirement Class (Core Problem Dimension)
C18 Non-Core Functional Requirement Class (Non-core Problem Dimension)
C19 Data Input Item
C20 Data Persistence Item
C21 Compound Requirement
Propositions
P1 The Functional Requirements Space is composed of 14 known Functional Requirements Classes, including Data Output,

Data Input, Event Trigger, Business Logic, Data Persistence, UI Navigation, External Call, Communication, User Interface,
UI Logic, Data Validation, External Behavior, Post-Condition, and Data Source.

P2 The Nine functional requirements classes of Data Output, Data Input, Event Trigger, Business Logic, Data Persistence,
Data Validation, User Interface, User Interface (UI) Logic, and User Interface (UI) Navigation belong to Core Functional
Requirement Classes.

P3 The five functional requirements classes of External Call, Communication, External Behavior, Post-Condition, and Data
Source belong to the Non-core Functional Requirement Classes.

P4 For every Event Trigger, there exists one corresponding System Function, Compound Requirement, or Atomic Functional
Requirement.

P5 For every requirement of type Data Validation, there is a high probability that at least one corresponding requirement of type
Data Output should also exist.

P6 For every System Function, there is a high probability that at least one requirement of type Data Persistence should also exist.
P7 For every System Function, there is a high probability that at least one requirement of type Data Input should also exist.
P8 For every System Function, there is a high probability that at least one requirement of type Data Output should also exist.
P9 For every System Function, there is a high probability that at least one requirement of type Business Logic should also exist.
P10 For every Data Input Item, there is a high probability that at least one corresponding Data Persistence Item should also exist.
P11 For every Data Input Item, there is a high probability that at least one corresponding requirement of type Data Validation

exist.
P12 For every System Function, there exists at least one corresponding Event Trigger.
P13 For every violation of a business rule, there exists a system reaction as a corresponding compound requirement, consisting of

a set of atomic requirements.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 230 Issue 3, Volume 10, July 2013

Table 2: Table 1 Continued

Explanations
E1 The functional requirements space in the domain of enterprise applications can be logically divided into two partitions: (a)

core functional requirements classes and (b) non-core functional requirements classes. As of yet, there are 9 known core and
5 known non-core classes of functional requirements. The sets of of core and non-core classes of functional requirements
will be updated with future observations and discoveries. See E2 and E3 as to why core and non-core classes exist in the
domain.

E2 Enterprise software systems, in order to support their corresponding business processes in the real-world, frequently need
to run system functions (through Event Triggers), which collect information (Data Input), check the validity of inputted
data (Data Validation), execute the prescribed business rules pertaining to the supported business process (Business Rules),
store information as a result of executing the system functions (Data Persistence), and interact with users through displaying
the results of executing the system functions, error messages, or success messages (Data Output). In GUI-based enterprise
systems, Data Inputs and Data Outputs are tied to user interfaces; Inputs are collected through a user interface and system
outputs are displayed on the user interface. These give rise to the three user interface-related classes of requirements including
User Interface, User Interface Logic, and User Interface Navigation. The sequence of event trigger, input, data validation,
business rule execution, output, and persistence, or a variation of this sequence, is very common in business systems, giving
rise to the 9 core classes of functional requirements.

E3 In addition to the core functional requirements classes, enterprise systems occasionally need to support features that are
not common in the domain, but specific to particular applications within the domain. Although compiling an exhaustive
list of non-core requirements classes would require surveying every imaginable application in the domain and therefore an
impossible task to carry on, in our studies so far, we have discovered 5 classes of non-core requirements.

E4 Event triggers, by definition, force the execution of either a single atomic requirement, a compound requirement, or a system
function (e.g., a collection of atomic and compound requirements).

E5 When the execution of a data validation rule results in the detection of a violation of the corresponding correctness rules
(i.e., detection of erroneous input), as a best practice, the user of the system needs to be notified, through appropriate error
messages and possibly be given instructional messages, describing a course of action that can be taken to rectify the problem.
Therefore, the existence of a requirement of type data validation, with a high probability, implies the existence of one or more
related requirements of type data output.

E6 Most business services, and system functions as their implementations in enterprise systems, need to store information,
typically collected from end users or generated as a result of a transaction with the end user. Therefore, it is very likely
that most system functions will have one or more statements of requirements, describing the data persistence aspects of the
system function.

E7 Most business services, and system functions as their implementations in enterprise systems, need to collect information, typ-
ically from end users. Therefore, it is very likely that most system functions will have one or more statements of requirements,
describing the data input aspects of the system function.

E8 From P7 and P11, we can deduce that it is very likely that a system function will have at least one requirement of type data
validation. According to P5, the existence of data validation requirements creates a high probability for the existence of
corresponding data output requirements. Therefore, from P7, P11, and P5, we can conclude P8. Moreover, System functions
often need to notify their end users of the successful completion of the system function through requirements of type data
output, giving rise to further opportunities for the existence of requirements of type data output in system functions.

E9 Most business services, and system functions as their implementations in enterprise systems, involve the execution of business
rules. Therefore, it is very likely for system functions to have one or more statements of requirements, describing the related
business rules.

E10 Business services, and system functions as their implementations in enterprise systems, are very likely to need to store
information collected from end users to conduct business and complete transactions. Therefore, it is very likely for input
data items to be stored in the system. From a specification point of view, input data items reappear in statements of data
persistence requirements.

E11 To prevent data entry errors, when such errors are possible, as a best practice, system functions need to validate inputted data
items before consumption and storage in the system. Therefore, data input items may need one or more relevant statement of
requirements describing the data validation rules.

E12 All System Functions should be accessible through at least one Event Trigger.
E13 Systems need to respond to violations of the business rules. This response is specified in the form a set of requirements.
Scope
S1 The Domain of Enterprise Systems

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 231 Issue 3, Volume 10, July 2013

2 A Formalism for Dimension-
Orientation

Improving the precision, completeness, and con-
sistency of documentation in software engineering
has been a major goal for the software engineering
community [2]. The use of mathematical expressions
in software engineering artifacts has been a major
part of the efforts directed towards achieving this goal
as mathematics is the best way to achieve precision
[2]. A mathematical basis for design allows many
types of quantitative evaluations of an IT artifact,
including optimization proofs, analytical simulation,
and quantitative comparisons with alternative designs
[14, 16]. In agreement with these considerations, in
this subsection, we will express the propositions of
the refined dimension-oriented theory, as presented
in Table 1, in a precise and formal mathematical
language. We will use a form of probabilistic logic
to capture the notion of strong implication, which is
present in several of our theory propositions. This
can be accomplished by extending the first order
logic with the notion of strong implication denoted
as ⇀. In logical propositions involving implications,
where the consequent is highly probable, but nor
certain, we will replace the standard implication
symbol (→) with the strong implication symbol (⇀),
indicating a strong probability for the consequent, if
the antecedent is true. Table 3 defines the set vari-
ables and predicates that will be used in our formal
definitions. Note that since our theory concerns the
atomic statements of requirements in the domain of
enterprise systems, we define the following universal
set, which contains all the elements in the universe of
discourse:

U =
n∪

i=1
Ri =

n∪
i=1

Req(Ai)

where Ai is an imaginable enterprise system and
Req(Ai) returns the set Ri of all atomic functional
requirements in enterprise system Ai. This universal
set U represents the functional requirements space in
the domain of enterprise systems, which is the subject
of the dimension-oriented theory. Note that atomicity
is a property of all the elements of the sets Ri and
consequently the universal set U . We will define our
axioms as follows:

Part-Whole Axiom:
∀x, y[Prt(x, y) ↔ Whl(y, x)]

Non-Inclusion of Self Axiom:
∀x[¬Prt(x, x)]

Atomicity Axiom:
∀x¬∃y[Atm(x) ↔ Prt(y, x)]

Compoundedness Axiom:
∀x∃y[Cmp(x) ↔ Prt(y, x)]

Single-Dimensionality Axiom:
∀x¬∃y¬∃z[Sdm(x) → x ∈ y ∧ x ∈ z]

where in the Single-Dimensionality Axiom
x ∈ U, y ∈ D, z ∈ D, y ̸= z.

Completeness Axiom:
∀x∃y[x ∈ y]

where in the Completeness Axiom x ∈ R, y ∈ D.

This last axiom is known as the Completeness
Axiom as it asserts that every atomic requirement in a
particular system Ai is assigned to a problem dimen-
sion from the set D of all known problem dimensions.
That is, set D is complete over all the requirements
of Ai. This implies that there exist a classifier func-
tion that maps every atomic requirement from system
Ai to exactly one of the classes of set D of functional
requirements classes in enterprise systems.

Note that from the Atomicity and the Compound-
edness axioms above we have:

Dichotomy Theorem:
Cmp(x) ↔ ¬Atm(x)

An inherent and important property of atomic re-
quirements, then, is that they are necessarily single-
dimensional. That is:

Single-Dimensionality of Atoms Theorem:
∀x[Atm(x) → Sdm(x)]

The functional requirements space is partitioned
into subsets, each representing a class of functional
requirements - a dimension. As shown in the for-
mulae P1 below, and stated in Proposition P1 of the
theory, the classes of functional requirements are fur-
ther categorized into two classes of core and non-core
classes. Formula P2 and P3 further show the known
classes of core and non-core functional requirements,
as described in propositions P2 and P3, respectively.
The remaining formulas correspond to their respective
propositions from Table 1.

D = C ∪N (P1)

C = O ∪ I ∪ T ∪B ∪ P ∪ V ∪ U1 ∪ U2 ∪ U3 (P2)

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 232 Issue 3, Volume 10, July 2013

Table 3: Set Variables

Set Variable
Set of Functional Requirements Classes in Enterprise Systems D
Set of Core Functional Requirement Class in Enterprise Systems C
Set of Non-Core Functional Requirement Class in Enterprise Systems N
Set of Atomic Functional Requirements for a particular Enterprise System Ai R
Set of Compound Functional Requirements for a particular Enterprise System Ai M
Set of System Functions for a Particular Enterprise System Ai F
Returns True if atomic requirement x is an Event Trigger T(x)
Returns True if atomic requirement x is a Data Validation V(x)
Returns True if atomic requirement x is a Data Persistence P(x)
Returns True if atomic requirement x is a Data Output O(x)
Returns True if atomic requirement x is a Data Input I(x)
Returns True if atomic requirement x is a Business Logic B(x)
Returns True if atomic requirement x is a UI Navigation Unv(x)
Returns True if atomic requirement x is a UI Logic Uil(x)
Returns True if atomic requirement x is a UI Uin(x)
Returns the set Ri of atomic functional requirements for System Ai Req(Ai)
Returns the set of data input items for a data input requirement x Itm(x)
Requirement x triggers atomic or compound requirement, or system function y Trg(x,y)
Requirement x is part of requirement y Prt(x,y)
Requirement x is whole of (i.e., includes) requirement y Whl(x,y)
Requirement x outputs a message about requirement y Out(x,y)
Requirement x specifies a validity rule for data item y Vld(x,y)
Requirement x specifies the storage for data input item y Str(x,y)
Requirements set Y specifies the response to Violation of Requirement x Rsp(x,Y)
Returns True if requirement x is atomic Atm(x)
Returns True if requirement x is compound Cmp(x)
Returns True if requirement x is single-dimensional Sdm(x)
Set of Data Output Atomic Requirements {r ∈ R : O(r)} O
Set of Data Input Atomic Requirements {r ∈ R : I(r)} I
Set of Event Trigger Atomic Requirements {r ∈ R : T (r)} T
Set of Business Logic Atomic Requirements {r ∈ R : B(r)} B
Set of Data Persistence Atomic Requirements {r ∈ R : P (r)} P
Set of UI Navigation Atomic Requirements {r ∈ R : Unv(r)} U3

Set of External Call Atomic Requirements N1

Set of Communication Atomic Requirements N2

Set of User Interface Atomic Requirements (UI) {r ∈ R : Uin(r)} U1

Set of UI Logic Atomic Requirements {r ∈ R : Uil(r)} U2

Set of Data Validation Atomic Requirements V
Set of External Behavior Atomic Requirements N3

Set of Post-Condition Atomic Requirements N4

Set of Data Source Atomic Requirements N5

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 233 Issue 3, Volume 10, July 2013

N = N1 ∪N2 ∪N3 ∪N4 ∪N5 (P3)

∀ri∃rj∃t∃m[ri ∈ R ∧ T (ri) → rj ∈ R ∧ ri ̸= rj∧
Trg(ri, rj)∨m ∈ M∧Trg(ri,m)∨t ∈ F∧Trg(ri, t)]

(P4)

∀ri∃rj [ri ∈ R∧V (ri) ⇀ rj ∈ R∧Out(rj , ri)] (P5)

∀t∃r[t ∈ F ⇀ (Prt(r, t) ∧ P (r))] (P6)

∀t∃r[t ∈ F ⇀ (Prt(r, t) ∧ I(r))] (P7)

∀t∃r[t ∈ F ⇀ (Prt(r, t) ∧O(r))] (P8)

∀t∃r[t ∈ F ⇀ (Prt(r, t) ∧B(r))] (P9)

∀ri∀d∃rj [ri ∈ R∧ I(ri)∧di ∈ Itm(ri) ⇀ rj ∈ R

∧ P (rj) ∧ Str(rj , d)] (P10)

∀ri∀d∃rj [ri ∈ R ∧ I(ri) ∧ d ∈ Itm(ri) ⇀ rj ∈ R

∧ V (rj) ∧ V ld(rj , d)] (P11)

∀t∃r[t ∈ F → r ∈ R ∧ T (r) ∧ Trg(r, t)] (P12)

∀ri∃rj [ri ∈ R ∧B(ri) ⇀ rj ∈ M ∧Rsp(rj , ri)]
(P13)

3 Dimension-Oriented Require-
ments Engineering (DORE)

Having developed a formalized theory that is capable
of making predictions about the requirements space
in the domain of enterprise systems, we now put the
theory’s predictions into practical use by using them
as input to the design process for a requirements engi-
neering process. The result is the following process,
called the Dimension-Oriented Requirements Engi-
neering (DORE), for the development of requirements

specifications for enterprise systems. The require-
ments engineer compiles and negotiates a list of sys-
tem functions (e.g., use cases, features, high-level re-
quirements, or system capabilities) needed by project
stakeholders for a business system and then follows
the following process to develop a complete specifi-
cation for each individual system function. Note how
the process steps are justified based upon the theory’s
propositions.

1. Identify and Specify Triggers - Justification:
P12 - Identity all the alternative ways (i.e., stim-
uli) to trigger the execution of the system func-
tion (e.g., system behavior). A system behavior
can be activated either by:

(a) User generated trigger - an end user signi-
fying the system, for instance, through gen-
erating a user interface event, such as click-
ing on a button, link, or menu item, or typ-
ing in a command at a command prompt.

(b) System generated trigger - a system vari-
able reaching a predefined threshold. For
instance, the automatic activation of a sys-
tem function to place an order for some
quantity of a good, when the inventory level
for that good reaches a predefined mini-
mum level. Another example would be a
recurring time trigger that automatically ac-
tivates a system behavior in predefined pe-
riodic time intervals.

For each identified event trigger, add a uniquely
identifiable and atomic statement of requirement
to the system function specification, describing
the event trigger. Tag each such requirement as
belonging to the event trigger class of functional
requirements.

2. Identify and Specify Inputs to System Func-
tions - Justification: P7 - For each documented
user generated event trigger in Step 1, identify
whether or not the event trigger requires to pass
any information to the system function. In other
words, does the system behavior require user-
provided external input before it can be acti-
vated? A system service, such as the one in
a typical banking system that opens a bank ac-
count for a customer, requires personal infor-
mation about the clients as well as information
about the type of account being opened. In con-
trast, a reporting system function that is activated
by a user interface event and displays a particular
report all based on default values or the existing
data of the system is an example of a trigger that
does not requires user input. An event trigger

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 234 Issue 3, Volume 10, July 2013

that merely makes the user interface for a par-
ticular system function accessible to the system
user is another example of a simple event trigger
without any user data input. The description for
many system use cases start with such an event
trigger, where the end user of the system noti-
fies the system of his or her intention to execute
a system function by generating a user interface
event. In response to such an event, the system
displays the input form to collect the required in-
formation for the execution of the system func-
tion. The user, after entering all the information,
eventually generates another event trigger to ex-
ecute the service, but unlike the previous event
trigger, this latter trigger passes the information
entered by the user to the system function.

For each identified system function with input
add a uniquely identifiable and atomic statement
of requirement to the system function specifica-
tion, explicitly listing all the input data items that
must be entered into the system by the end user.
Tag each such requirement as belonging to the
data input class of functional requirements.

3. Identify and Specify Data Validations - Justifi-
cation: P11 - For every data input item in every
data input requirement specified in Step 2, iden-
tify which data inputs require validation to detect
and prevent data entry problems and what those
validation rules are for each such data input item.

For every identified data input item with val-
idations specify each data validation rule as a
uniquely identifiable and atomic statement of re-
quirement. Tag each such requirement as belong-
ing to the data validation class of functional re-
quirements.

4. Identify and Specify Outputs for Violated Val-
idation Rules- Justification: P5 - For every data
validation requirement, specified in Step 3, iden-
tify whether an alert message needs to be dis-
played and what the format and content of the
message should be, in case the validation rule is
violated, to inform the end user of the erroneous
data entry and guide the user to rectify the prob-
lem.

For every data validation requiring relevant out-
put messages add a uniquely identifiable and
atomic statement of requirement, explicitly spec-
ifying the content and format of the message to
be displayed. Tag each such requirement as be-
longing to the data output class of functional re-
quirements.

5. Specify User Interface for Inputs and Outputs
- Justification: P2 - For each system function
that requires external inputs from users (identi-
fied in Step 2), add requirements to the system
function specification that describe the interface
(e.g., GUI such as an input screen) that will be
needed to collect the input data items specified
in Step 2. The specification of the user interface
requirements for a system function will include
a collection of uniquely identifiable and atomic
statements of requirements that together specify
the various aspects of the user interface including
the user interface components that will be used
for data entry, the style of the data input (e.g., en-
tering text or selecting from a list), the location of
the components, and cosmetic aspects such as the
layout, font, and color of the data input screen.
One or more user interfaces might be needed
for a single system function. Conversely, mul-
tiple system functions can share the same user
interface. Visual descriptions of user interface
requirements, such as screen mock-ups, are an
option here. Some user interface requirements
can also be derived from the data output require-
ments, documented in Step 4, as these outputs are
displayed through the user interface and, there-
fore, can add new statements of requirements to
the specification. An examples of such a require-
ment would be a statement describing where an
output should be placed on a screen. Note that in
command line systems the interactions between
the system and the user takes place through a
series of data inputs and outputs rather than a
graphical interface.

6. Identify and Specify Event Trigger for UI
Level Data Validations - In GUI-based sys-
tems, for every data validation requirement spec-
ified in Step 3, determine if the rule needs to be
checked at the graphical user interface level, at
the system back end, or both.

For every validation rule identified as requiring
validation at the UI level, add a uniquely identi-
fiable and atomic statement of requirement that
describes the user interface event trigger for the
corresponding user interface data input compo-
nent. Tag each such requirement as belonging
to the event trigger class of functional require-
ments.

7. Identify and Specify the Business Rules - Jus-
tification: P9 - Identify the set of business rules
that are relevant to the system function or busi-
ness service. Business rules typically specify cal-
culations or rule checking using existing data of

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 235 Issue 3, Volume 10, July 2013

the system and/or the new data passed to the sys-
tem function. Statements of functional require-
ments describing business rules define the rules
of the application domain. These are the rules
that govern the operations in an enterprise do-
main (e.g., banking, insurance, accounting, in-
ventory management, order processing, etc.).
Document each identified business rule as a
uniquely identifiable and atomic statement of re-
quirement. Tag each such requirement as be-
longing to the business rule class of functional
requirements.

8. Identify and Specify System Reaction for Vio-
lated Business Rules - Justification:P13 - For
every business rule, specified in Step 7, identify
the appropriate system response/reaction to the,
in case the business rule is violated. This sys-
tem reaction is specified as a set of one or more
requirements. The reaction requirements set can
include requirements of various types. As an ex-
ample of a simple response to the violation of
a business rule, a system may display an alert
message to the end user. This will lead to the
addition of a requirement of type output to the
system function specification. As another exam-
ple, if the system needs to roll back changes to
a database as a result of a violation of a business
rule, this rollback response can be specified as a
requirement of type data persistence and added
to the system function specification.
For every requirement identified as being part of
the system response to the violated business rule,
add a uniquely identifiable and atomic statement
of requirements. Tag each such requirement with
its proper class of functional requirements.

9. Identify and Specify Data Persistence - Justi-
fication: P6 and P10 - Identify a list of items
and their values that need to be persisted as a re-
sult of executing the system function. Data per-
sistence requirements specify all database create,
read, update, and delete operations. The list of
items requiring persistence often includes, but is
not limited to, many of the data input items listed
under the data input requirements, documented
in Step 2.
Add one or more uniquely identifiable atomic
statements of requirements to the specification
of the system function, describing the required
persistence operation, explicitly stating the list
of entities or items along with their values. Tag
each such statement of requirement as belonging
to the data persistence class of functional require-
ments.

10. Identify and Specify Data Outputs for System
Function Results - Justification: P2, P8 - The
execution of system functions results in either a
successful completion or a failure. In either case,
the user of the system needs to be notified of the
failure or success of the service. In the case of
successful execution, results need to be displayed
to the user. Success and failure messages as well
as the results of the execution of system functions
are described using statements of requirements
that specify the content and format of the outputs.
Tag each such requirement as belonging to the
data output class of functional requirements.

11. Specify UI Navigation - Justification: P2 - If
the fulfillment of a condition transfers the con-
trols of the application from the current user in-
terface to another user interface of the system
(e.g., another screen) then document this transi-
tion as a uniquely identifiable and atomic state-
ment of requirement. Tag each such requirement
as belonging to the UI navigation class of func-
tional requirements. UI navigation requirements
describe the flow of the application. An example
of such actions includes the violation of a data
validation or business rule which takes the user
to an error screen.

12. Specify UI Logic - Justification: P2 - For ev-
ery user interface, such as a system screen, de-
termine if the interface will engage in a dynamic
interaction with the end user. For instance, a sys-
tem screen may dynamically update itself and
present a different set of user interface compo-
nents based on an end user’s selection of an item
on the screen. Document the rules for such user
interface interactions as uniquely identifiable and
atomic statements of requirements. Tag each
such requirement as belonging to the UI logic
class of functional requirements.

4 Controlled Evaluation of DORE
In the previous steps, we used the dimension-oriented
theory as a theoretical foundation, on top of which,
we designed the DORE approach to requirements en-
gineering. To evaluate the practical effectiveness of
this requirements method in real-world software en-
gineering situations, we must put it into practice by
applying it to the requirements phase in enterprise sys-
tem development projects. This will allow us to col-
lect evidence on the effectiveness or ineffectiveness
of the method. Such evidence can then be used to
improve the design of the method. However, as a

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 236 Issue 3, Volume 10, July 2013

first step in evaluation, it is advisable to test the pro-
cess in one or more controlled or simulated smaller-
scale proof-of-concept projects before introducing the
method to a real-life software engineering context,
where, due to schedule and cost constraints, the stakes
are high. Successful applications of the method to pi-
lot projects as well as collecting and applying feed-
back from such controlled evaluations to improve the
method will help us to increase our confidence on the
effectiveness of the process in real-world large-scale
projects. Accordingly, we applied the DORE method
to the requirements phase of an information system
development project to evaluate its effectiveness in
producing complete requirements specifications. The
project, wherein the DORE method was tested, was
a web-based information system that would combine
social networking capabilities with Geographical In-
formation System (GIS) capabilities, allowing its end
users to shares various categories of stories and news
with friends in their network. Stories were geograph-
ically tagged, so it would allow the users to visually
navigate the network of friends and stories through
an interactive world map. The system included 11
system functions and 90 statements of functional re-
quirements. A description of this system can be found
in [19]. Our criterion for the effectiveness of the re-
quirements method is the completeness of the specifi-
cation that it produces. In our case study, which is re-
ported in [19], the DORE method helped the require-
ments engineer to discover and specify a significant
majority of the system functional requirements (over
90%) during the requirements phase, which is very
encouraging. In a number of cases, the statements
of requirements were misclassified (i.e., assigned to
the incorrect class), which were discovered and fixed
during the requirements inspection process. We up-
dated the descriptions of the requirements classes as
well as the process steps to minimize the possibility
of incorrect classifications. We also felt that a short
training workshop and training material could have
significantly prevented the occurrence of such cases.
We incorporated these insights into our plan for the
preparation of the method before its introduction to
large-scale industrial projects. Planning is currently
underway for the introduction of the DORE method
to a number of industrial projects. Training on DORE
is part of this plan.

The development of theories and theory-based
methods in software engineering involve continuous
cycles of refinements. Theories drive the development
of software engineering methods, while the practical
application of such methods provide feedback to re-
fine their underlying theories. Once we evaluate the
DORE method in industrial projects, we will use the
results from such industrial evaluations to further im-

prove the DORE process.
The dimension-oriented theory presented in this

paper captured the essence of functional requirements
in enterprise systems and empirical evidence thus far
confirms that it is capable of making fairly accurate
predictions about its domain of discourse. However,
it must be acknowledged that since each software en-
gineering setting is unique, software engineering the-
ories might need local adaptations to be directly useful
in concrete cases [23]. A corollary of this is that the
software engineering methods that are based on such
theories might need local adaptations as well to reflect
the adaptations in their underlying theories. There-
fore, although we believe the dimension-oriented re-
quirements method should be sufficient for most en-
terprise systems, it is expected that local adaptations
to specific organizational and project contexts might
further increase its effectiveness.

5 Evaluating Theoretical and
Methodological Aspects in DORE

The ultimate criterion to judge dimension orientation
as a software engineering paradigm, and in particular
DORE, is how useful it is to the software engineering
practitioners in the software industry. However, there
are useful evaluation frameworks that provide crite-
ria for the evaluation of the theoretical and method-
ological aspects of a theory or approach. In this sec-
tion, we will use two such widely-used frameworks,
namely the software engineering theory goodness cri-
teria by Sjoberg et al. [23] and the design science re-
search guidelines by Hevner et al [14], to evaluate the
goodness of the dimension-oriented theory as well as
the proposed research and design methodology, which
was used to develop the DORE method, respectively.

5.1 The Goodness of the Dimension-
Oriented Theory

Sjoberg et al. [23] provide a framework for evaluat-
ing empirically-based theories in software engineer-
ing that includes the followings six criteria:

• Testability

• Empirical Support

• Explanatory Power

• Parsimony

• Generality

• Utility

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 237 Issue 3, Volume 10, July 2013

We will briefly discuss each of these criteria in the
context of the dimension-oriented theory presented in
this paper. Testability, refers to the degree to which the
empirical refutation of a theory is possible [23] and
is the criterion that distinguishes science from non-
science [18, 23]. Sjoberg et al. [23] emphasize the
following three criteria for testability:

• The constructs and propositions of a theory
should be clear and precise such that they are un-
derstandable, internally consistent, and free from
ambiguities

• It must be possible to deduce hypotheses from
the theory’s propositions, so that they may be
confirmed or dis-confirmed

• The theory’s scope conditions must be explicitly
and clearly specified, so that the domain or situa-
tions in which the theory should be confirmed or
dis-confirmed and applied is clear.

The constructs and propositions of the dimension-
oriented theory are clearly stated in Table 1. We fur-
ther mathematically formalized the theory constructs
and propositions to achieve precision and avoid am-
biguities. It is easy to derive hypotheses from this
theory’s propositions that can be tested for validity.
In fact, this is precisely what we did when we evalu-
ated the predictive power of the theory in our previous
work. The theory’s domain was clearly stated to be
the domain of business information systems. There-
fore, we believe that the dimension-oriented theory,
presented in this paper, meets the testability criterion
for a theory.

The empirical support criterion refers to the de-
gree to which a theory is supported by empirical stud-
ies that confirms its validity [23]. We used data from
18 software projects to build and test the dimension-
oriented theory. We believe these 18 cases provided
us a large enough empirical data set that supports the
theory. However, as with any other theory, replicated
studies to test the theory can increase our confidence
to the validity of the theory by aggregating further ev-
idence to support the theory. We plan for further repli-
cations of the study as future work.

The explanatory power of a theory refers to the
degree to which a theory accounts for and predicts
all known observations within its scope. It also re-
fer to how well the theory relates to what is already
well known [23]. In previous work, we evaluated the
predictive power of the dimension-oriented theory and
demonstrated that it has a high predictive power in the
domain of enterprise systems.

Parsimony refers to the degree to which a theory
is economically constructed with a minimum of con-

cepts and propositions [23]. We tried to achieve some
degree of parsimony by detecting and removing re-
dundant constructs and propositions from the theory.
For instance, in an earlier version of the theory, we
had a Proposition P5, which was later removed in the
subsequent version of the theory because Proposition
P12 subsumed it and therefore Proposition P5 was not
necessary.

Generality refers to the breadth of the scope of a
theory and the degree to which the theory is indepen-
dent of specific settings [23]. A theory with a large
scope, such as the domain of all software projects, will
have a larger explanatory breath and thus a broader
applicability, but may demand more effort in opera-
tionalizing the theory to a given situation. In contrast,
a lesser generality might make a theory immediately
applicable [23]. As we discussed earlier in this pa-
per, our main goal from theory building was to inform
the design process for a requirements method for the
domain of enterprise systems and therefore direct ap-
plicability was our top priority. Accordingly, we lim-
ited our theory to the domain of enterprise systems.
However, as future work, we plan to conduct similar
studies in other software domains to understand the
degree to which the dimension-oriented theory holds
for other domains.

The utility of a theory refers to the degree to
which a theory supports the relevant areas of the
software industry [23]. Our goal in developing the
dimension-oriented theory was to support the require-
ments process in the domain of enterprise systems.
We believe the theory completely supports this area
and thus has a high practical utility.

5.2 Conformance to Design Science Guide-
lines

The work reported in this paper nicely fits within
the design science paradigm [14], which provides
a framework for information systems (IS) research.
Hevner et al. [14] established the following seven
guidelines that set the requirements for effective de-
sign science research:

• Guideline 1: Design as an Artifact

• Guideline 2: Problem Relevance

• Guideline 3: Design Evaluation

• Guideline 4: Research Contributions

• Guideline 5: Research Rigor

• Guideline 6: Design as a Search Process

• Guideline 7: Communication of Research

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 238 Issue 3, Volume 10, July 2013

We will briefly discuss what each guideline
means and how we addressed the guideline. The
first guideline, design as an artifact, states that design
science research must produce a viable Information
Technology (IT) artifact in one of the following four
forms, which is created to address an important orga-
nizational problem [14]:

• Construct (i.e., vocabulary and symbols)

• Model (i.e., abstractions and representations)

• Method (i.e., algorithms and practices)

• Instantiation (i.e., implemented and prototype
systems)

These four types of artifacts provide guidelines
and prescriptions that allow us to understand and solve
problems inherent in the development and implemen-
tation of information systems within organizations
[15, 17]. Constructs provide the vocabulary and sym-
bols used to define problems and solutions [14] and
as such have a significant impact on the way in which
tasks and problems are conceived [1, 20]. In our work,
the concept of a problem dimension is the main con-
struct. It allows us to view and describe software
engineering problem spaces, such as the functional
requirements space, as a set of problem dimensions,
which in turn impacts how we perceive and attempt to
solve software engineering problems, hence the name
Dimension-Oriented Software Engineering (DOSE).
The search for an effective problem representation is
crucial to finding an effective design solution [26]. Si-
mon [22] states that ”solving a problem simply means
representing it so as to make the solution transparent”.

We argue that representing software problem
spaces as a set of problem dimensions indeed makes
their solutions transparent. We developed a theory
that revolves around the notion of problem dimen-
sions. The laws and the explanations of the proposed
theory explain and predict the nature and the relation-
ships among the problem dimensions in the domain of
enterprise systems and, therefore, provide a model for
the domain of enterprise systems. In previous work,
we demonstrated that this model is a fairly accurate
representation of systems in the domain of enterprise
systems. We then used this empirically-verified model
in building a requirements practice around it (Subsec-
tion 3) - the dimension-oriented requirements engi-
neering. In Subsection 4, we further demonstrated the
feasibility and effectiveness of the new requirements
process by instantiating it in the context of a proof-
of-concept information system development project.
Therefore, our work involved the creation of all four

types of IT artifacts that are the subject of the design
science research paradigm.

The second guideline, the problem relevance,
states that the objective of design-science research is
to develop technology-based solutions to important
and relevant business problems. In the introduction
to this paper, we discussed that the quest for software
engineering approaches that are economically viable
is both important and relevant to the business orga-
nizations, who depend on information technology to
achieve their business goals, namely increasing rev-
enue and decreasing cost. The dimension-oriented re-
quirements process described in this paper, is a step
toward achieving a more effective and productive ap-
proach for developing high-quality information sys-
tems. A high-quality and complete specification can
avoid unnecessary rework and, therefore, make a sig-
nificant contribution to achieving a more economic
approach to information systems development.

The third guideline, design evaluation, empha-
sizes that the utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via well-
executed evaluation methods including observational
methods such as case and field studies, analytical
methods such as static analysis, architecture analy-
sis, optimization, and dynamic analysis, experimental
methods such as controlled experiments and simula-
tion, testing-based methods such as functional (black
box) testing and structural (white box) testing, and
descriptive methods such as informed arguments and
scenarios [14].

Evaluation is an integral part of the research and
design methodology that was followed to produce the
dimension-oriented theory as well as the dimension-
oriented requirements engineering approach pre-
sented in this present work. For instance, we eval-
uated (a) the validity of the hypothesis underlying
the dimension-oriented theory, (b) the validity and
the predictive power of the dimension-oriented the-
ory that is formed based on the accepted hypothesis,
(c) the effectiveness of the method that has been built
based on this theoretical foundation in a controlled
environment, and (d) the resulting DORE method by
putting it into practice in the real environment. Re-
sults from every form of evaluation is fed back to the
design process, and is used to improve the process.

The fourth guideline, research contributions,
states that effective design-science research must pro-
vide clear and verifiable contributions in the areas
of design artifact, design foundations, and/or design
methodologies. The work reported in this paper
make a number of such contributes including a de-
sign methodology, a set of constructs to view and rep-
resent software engineering problem spaces such as
the functional requirements space, a domain model for

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 239 Issue 3, Volume 10, July 2013

enterprise systems, a theory, a requirement engineer-
ing method, and a series of evaluations.

The fifth guideline, research rigor, states that
design-science research relies upon the application of
rigorous methods both in the construction and evalua-
tion of the design artifact [14]. The design methodol-
ogy presented in this paper relies on well-established
scientific research methods including, hypothesizing,
hypothesis testing via adherence to appropriate data
collection and analysis techniques, theory building
and evaluation as well as other established best prac-
tices in empirical software engineering research.

The sixth guideline, design as a search process,
states that the search for an effective artifact requires
utilizing available means to reach desired ends while
satisfying laws in the problem environment [14].
Hevner et al. [14] emphasize that the search for the
best, or optimal, design is often intractable for realistic
information systems problems. Therefore, it involves
a heuristic-based iterative search process for a satis-
factory solution. The requirements process, presented
in this paper, was designed through several cycles of
design, evaluation, and refinements. We developed
a theory to inform and facilitate the initial design of
the process and then used feedback from several types
of evaluations to refine and improve both the process
and its underlying theory. The end result is a repeat-
able requirements process that is capable of guiding
the requirements engineer through the task of creating
a complete functional specification for systems in the
domain of enterprise systems. The design of the pro-
cess steps is based on the laws of the domain and helps
to minimize specification defects in the form of miss-
ing requirements hence producing a complete specifi-
cation of functional requirements.

The seventh guideline, the communication of
research, emphasizes that design-science research
must be presented effectively both to technology-
oriented as well as management-oriented audiences
[14]. Technology-oriented audiences need sufficient
details in order to be able to implement the de-
scribed design artifact. We have described a step by
step requirements process (see Subsection 3), which
should be easy for requirements engineers to follow
to produce functional specifications for their enter-
prise projects. Hevner et al. [14] also emphasize
that it is important for such audiences to understand
the processes by which the artifact - in our case, the
DORE requirements process - was constructed and
evaluated. The benefits of such an understanding is
that it establishes repeatability of the research project
and builds the knowledge base for further research
extensions by design-science researchers in informa-
tion systems. We described our design methodology
in previous work and rigorously followed it to design

the DORE requirements process. Therefore, we be-
lieve it should be possible for information systems re-
searchers to reuse the proposed design methodology
to design novel software engineering methods or ex-
tend the work reported in this paper. In the related
work section of this paper, we will discuss some pos-
sible directions for future work.

Management-oriented audiences, on the other
hand, need sufficient details in order to decide whether
organizational resources should be committed to con-
structing, or purchasing, and using the artifact within
their specific organizational context. In our work, we
attempted to achieve this by conducting case studies
and collecting evidence on the effectiveness of the
proposed requirements methods. Data from our case
studies thus far confirm that the process can help IS
development organizations to be more productive in
creating functional specifications for enterprise sys-
tems (i.e., economic incentive), while helping them to
produce higher-quality functional specifications (i.e.,
more complete), which in turn can increase the quality
of the resulting information systems.

6 Conclusions and Directions for Fu-
ture Work

Our position is that a fruitful avenue for designing
more effective software engineering processes is to
build domain-specific software engineering theories
that can then be used as a solid scientific foundation
for the design of various life cycle processes within
the domains of interest. Accordingly, in this paper,
we presented a domain-specific approach for require-
ments engineering in the domain of business infor-
mation systems, called Dimension-Oriented Require-
ments engineering (DORE), and demonstrated how
every step in the DORE process is backed by the-
ory propositions and their corresponding explanations
from the dimension-oriented theory of requirements
space. More details about the dimension-oriented the-
ory and its practical applications in various areas of
software engineering can be found in our previous
works (see [3, 11, 4, 10, 5, 6, 9, 8, 7, 13, 12], for ex-
ample). In this paper, we demonstrated yet another
practical application of this theory in the area of re-
quirements engineering for the domain of business in-
formation systems. We also evaluated the method-
ological and theoretical aspects of the work reported
here through the two frameworks of design science re-
search [14] and software engineering theory goodness
criteria [23].

In future work, we plan to use dimension-
orientation as a theoretical foundation to improve
other software life cycle processes, including architec-

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 240 Issue 3, Volume 10, July 2013

ture [7][25]. Work on a dimension-oriented approach
to test case development is currently underway. We
also plan to apply dimension-orientation to other soft-
ware domains, including the domain of scientific sim-
ulation applications [21][24]. Finally, we plan to in-
troduce the DORE requirements process into a num-
ber of industrial projects and use the resulting feed-
back to further improve the DORE process.

References:

[1] R.J. Boland, Design in the Punctuation of man-
agement science, in Managing as Design: Cre-
ating a Vocabulary for Management Education
and Research, R. Boland (ed.), Frontiers of
Management Workshop, Weatherhead School of
Management, June 2002.

[2] X. Feng, and D.L. Parnas, and T.H. Tse,
T. O’Callaghan, A Comparison of Tabular
Expression-Based Testing Strategies, in IEEE
Transactions on Software Engineering, IEEE
Computer Society, Vol. 37, No. 5, Septem-
ber/October 2011, pp. 616-634.

[3] A. Ghazarian, Characterization of Functional
Software Requirements Space: The Law of Re-
quirements Taxonomic Growth, in Proceedings
of 20th IEEE International Requirements Engi-
neering Conference (RE’2012), Chicago, USA,
September 2012.

[4] A. Ghazarian, Coordinated Software Develop-
ment: A Framework for Reasoning about Trace
Links in Software Systems, Proc. of the IEEE
13th Int’l Conf. on Intelligent Engineering Sys-
tems (INES 2009), April 2009, pp. 39–44.

[5] A. Ghazarian, Effects of Source Code Regular-
ity on Software Maintainability: An Empirical
Study, Proc. of the IASTED Int’l Conf. on Soft-
ware Engineering and Applications (SEA 2010),
Marina del Rey, USA, November 2010.

[6] A. Ghazarian, A Probabilistic Mathematical
Model to Measure Software Regularity, Pro-
ceedings of the 15th IASTED International Con-
ference on Software Engineering and Applica-
tions (SEA 2011), Dallas, December 2011, USA.

[7] A. Ghazarian, A Domain-Specific Architectural
Foundation for Engineering of Numerical Soft-
ware Systems, WSEAS Transactions on Systems,
No. 7, Vol. 10, July 2011, pp. 193–208.

[8] A. Ghazarian, Traceability Patterns: An Ap-
proach to Requirement-Component Traceability
in Agile Software Development, Proc. of the 8th
WSEAS Int’l Conf. on Applied Computer Science
(ACS’08), Venice, 2008, pp. 236–241.

[9] A. Ghazarian, A Formal Scheme for Systematic
Translation of Software Requirements to Source
Code, Proceedings of WSEAS Applied Comput-
ing Conference (ACC 2011), Angers, France,
November 2011, pp. 44–49.

[10] A. Ghazarian, A Matrix-Less Model for Trac-
ing Software Requirements to Source Code, Int’l
Journal of Computers, NAUN, ISSN: 1998-
4308, Issue 3, Volume 2, 2008, pp. 301–309.

[11] A. Ghazarian, M. Sagheb-Tehrani, and A. Ghaz-
arian, A Software Requirements Specification
Framework for Objective Pattern Recognition:
A Set-Theoretic Classification Approach, Proc.
of the 16th IEEE Intl Conf. on Engineering
of Complex Computer Systems (CECCS 2011),
USA, 2011, pp. 211–220.

[12] A. Ghazarian, R. Chughtai, Dimension-Oriented
Inspection of Use Case-Based Requirements
Specifications, Proceedings of the European
Conference of Computer Science (ECCS12),
WSEAS/NAUN, Paris, France, December 2012.

[13] A. Ghazarian, Dimension-Driven Software De-
velopment Through Traceability Patterns, Pro-
ceedings of the European Conference of Com-
puter Science (ECCS12), WSEAS/NAUN, Paris,
France, December 2012.

[14] A.R. Hevner, and S.T. March, and J. Park, and
S. Ram, Design Science in Information Systems
Research, MIS Quarterly, Vol. 28, No. 1, March
2004, pp. 75-105.

[15] S. T. March, and G. Smith, Design and Natu-
ral Science Research on Information Technol-
ogy, Decision Support Systems (15:4), Decem-
ber 1995, pp. 251-266.

[16] F. Neri, Learning and Predicting Financial Time
Series by Combining Evolutionary Computation
and Agent Simulation, Applications of Evolu-
tionary Computation, EvoApplications, LNCS
6625, pp. 111–119, Springer, Heidelberg (2011).

[17] J. Nunamaker, and M. Chen, and T. D. M. Pur-
din, Systems Development in Information Sys-
tems Research, Journal of Management Infor-
mation Systems (7:3), inter 1991a, pp. 89-106.

[18] K. Popper, The Logic of Scientific Discovery,
Hutchison, London, 1959.

[19] R. Pulavarthi, and A. Ghazarian, An Interactive
Network of Events with Geographic Perspec-
tive, WSEAS Transactions on Information Sci-
ence and Applications, No. 12, Vol. 9, pp. 369-
378, World Scientific and Engineering Academy
and Society, December 2012.

[20] D. A. Schon, The Reflective Practitioner: How
Professionals Think in Action, Basic Books,
New York, 1983.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 241 Issue 3, Volume 10, July 2013

[21] L. Shuang, W. Zhixin, W. Guoqiang, A Feed-
back Linearization Based Control Strategy for
VSC-HVDC Transmission Converters, WSEAS
Transactions on Systems, Issue 2, Volume 10,
pp. 49-58, February 2011.

[22] H. A. Simon, The Sciences of the Artificial, 3rd
Edition, MIT Press, Cambridge, MA, 1996.

[23] D.I.K. Sjoberg, T. Dyba, B.C.D. Anda, and J.E.
Hannay,Building Theories in SOftware Engi-
neering, Guide to Advanced Empirical Software
engineering, F. Shull et al. (eds.), Springer, 2008,
pp. 312-336.

[24] T-S Tsay, Intelligent Guidance and Control
Laws for an Autonomous Underwater Vehicle,
WSEAS Transactions on Systems, Issue 5, Vol-
ume 9, pp. 463-475, May 2010.

[25] S-G Yoo, K-Y Park, J. Kim,Software Architec-
ture of JTAG Security System, WSEAS Transac-
tions on Systems, Issue 8, Volume 11, pp. 398-
408, August 2012.

[26] R. Weber, Editor’s Comments:Still Desperately
Seeking the IT Artifact, MIS Quarterly (27:2),
June 2003, pp. iii-xi.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Arbi Ghazarian

E-ISSN: 2224-2899 242 Issue 3, Volume 10, July 2013

